
A DEDUCTIVE APPROACH TO
AUTOMATED PLANNING

S Final Report

N February, 1989

N ~Y) By:
Richard J. Waldinger, Staff Scientist

I Artificial Intelligence Center

Prepared for: MAR 15 1

Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Attention: Dr. Alan Meyrowitz
Mathematical and Information Sciences

~ ONE. Contract IN00014-84-C-0706
SRI Project 7784

333 Ravenswood Av(, Menlo Park CA 94025

rnational 326-6200 * TWX 910-373-2046 e T-l x ,34-486

.4i

1. Description of the Scientific Research Goals

The principal goal of this project is to apply techniques from automated deduc-

tion to programs in real-world and robotic planning and the synthesis of imperative

programs. Expected benefits include a reduction in the human effort required to

develop complex plans and programs, a reduction in the error-rate associated with

planning and programming, and an increase in the ease of modifying existing plans

and programs to accommodate to changes in purpose and environment.

2. Background: Deductive Tableau

For many years SRI has been working (principally under ONR and NSF sup-

port) on the automatic synthesis of computer programs. We have developed a

deductive approach to this problem [Manna and Waldinger 86A] according to which

programming is regarded as a task in theorem proving. To construct a program that

will meet a given specification, one proves the existence of an output that satisfies

the specified conditions. The proof is restricted to be sufficiently constructive to

indicate a computational method for finding such an output. This method then

becomes the basis for a computer program that is extracted from the proof.

A program constructed in this way is guaranteed to meet its specification and

requires no further verification. The structure of such a program will reflect the

form of the proof from which it has been extracted. In particular, case analysis

in the proof corresponds to a conditional test in the program, and mathematical

induction in the proof corresponds to a recursive construct in the program.

We have introduced a deductive-tableau theorem-proving framework that is es-

pecially well suited to the program synthesis application. This framework incorpo-

rates several of the most successful techniques in automated reasoning, including

nonclausal resolution, conditional rewriting, and mathematical-induction rules.

The deductive approach was originally developed for the synthesis of applicative j---
programs, which yield an output but alter no data structures. More recently, we

have extended the approach to the synthesis of imperative programs, which can alter

data structures as part of their intended behavior. This extension is immediately

applicable to problems in real-world and robotic planning. Plans are closely anal-

ogous to imperative programs in that actions resemble instructions, tests resemble

conditionals, and the world model may be regarded as a data structure.

1 I' , .t. , +u

I i

.4

3. Progress

A. Fluent Theory

As part of our effort to extend the deductive approach to imperative program

synthesis and planning, we have introduced a new fluent theory, a first-order logical

theory in which operations are explicit objects; in other words, variables and terms

can stand for operations and quantifiers can range over operations. Here opera-

tions include instructioDs (or actions), sequences of instructions, and conditional

instructions. To construct an imperative program meeting a given specification, we

prove (within fluent theory) the existence of an operation satisfying the specified

conditions. Just as in the synthesis of applicative programs, an imperative program

meeting the specified conditions is then extracted from the proof.

The same ieductive-tableau framework that we have used for the synthesis of

applicative programs can be adapted readily to the synthesis of imperative pro-

grams (and plans). Properties of the world, descriptions of the instructions, and

specification of the goal are all expressible as sentences in fluent theory. As in the

synthesis of applicative programs, conditional programs are introduced by the use

of case analysis in the proof, and recursive programs by the use of the induction

principle. The deductive approach contrasts with much work in planning, which

avoids the problem of forming conditional and recursive plans.

B. Implementation of the Deductive-Tableau System

In the past few months we have been engaged in the implementation of a

deductive-tableau theorem prover. Although out intention is to automate as much

as possible of the programming process, this first implementation is interactive.

The system displays the proof so far; the user selects the next rule and indicates

how it is to be applied; the system applies the rule and (if the application is legal)

displays the new tableau. When the proof is complete, the system extracts the

corresponding program or plan.

The system is intended for experimental and educational purposes. It is cur-

rently being used to introduce Stanford University students to the deductive-tableau

framework.

. .. ., i I I I I I I I I I 9

.4[

C. Exposition

For the past several years Manna aid Waldinger have been engaged in an in-

troductory exposition of those aspects of logic and automated deduction that are

relevant to problems in program synthesis and planning. The second volume of this

work, The Logical Basis for Computer Programming: Deductive Systems, is now

near completion [Manna and Waldinger 89). It contains a good introduction to the

deductive-tableau framework, and includes descriptions of skolemization, unifica-

tion, resolution, and well-founded induction.

D. Database Management

The problem of updating a database has much in common with imperative

program synthesis and planning, and we have had some success in applying the

deductive approach to database problems. In collaboration with a Stanford Ph.D.

student specializing in database mangement, we have extracted database update

programs from fluent-theory proofs. This work is reported in the database litera-

ture [Qian and Waldinger 88].

4. Summary

The following accomplishments have been supported by ONR Contract N00014-

84-C-0706:

" Development of a fluent theory for the derivation of imperative programs and

plans.

" Application of fluent theory to planning.

" Extension of the deductive-tableau framework to produce fluent-theory proofs.

" Implementation of an interactive system to prove theorems within the deductive-

tableau framework.

" Completion of the second volume, Deductive Systems, of the book The Logical

Basis for Computer Programming.

" Application of fluent theory to the derivation of programs for updating databases.

3

5. Publications

A paper on fluent theory and its application to imperative program synthesis,

"The Deductive Synthesis of Imperative LISP Programs," was presented at the

1987 National Conference on Artificial Intelligence, and appeared in the proceedings

[Manna and Waldinger 87B]. A description of the application of fluent theory to

planning problems, "How to Clear a Block: A Theory of Plans," was presented (in

parts) at various workshops and appears in the Journal of Automated Reasoning

[Manna and Waldinger 87C]. A reprint is attached.

A description of the application of fluent theory to database management [Qian

and Waldinger 881, "A Transaction Logic for Database Specification," appears in
the proceedings of SIGMOD'88. A response [Waldinger 87] to Drew McDermott's

critique on deductive methods, "The Bomb in the Toilet," appears in Computational

Intelligence. A basic introduction to the deductive-tableau method and a typical

example of its application, "The Origin of a Binary-Search Paradigm," [Manna and
Waldinger 87A] appears in the journal Science of Computer Programming. The

Logical Basis for Computer Programming, Volume II: Deductive Systems [Manna

and Waldinger 89], will be published by Addison-Wesley.

6. Future Research

Our plans, reflected in our current proposal to ONR, include the following:

" Implementation of an automatic system for planning and imperative program

synthesis.

" Extension of the approach to allow the synthesis of concurrent plans and

programs.

" Extension of the approach to take into account the efficiency and other ratings

of quality of the derived plan or program.

4

References

(Manna and Waldinger 86A] Z. Manna and R. Waldinger, A Dcductive
Approach to Program Synthesis, Science of Computer Programming, 2(l):90-

121, 1980; reprinted in C. Rich and R.C. Waters, editors, Readings in Artificial

Intelligence and Software Engineering, pp. 3-34, Morgan Kaufmann, 1986.

(Manna and Waldinger 86B] Z. Manna and R. Waldinger, Special Rela-
tions in Automated Deduction, Journal of the ACM, 33(l):1-59, 1986.

[Manna and Waldinger 87A] Z. Manna and R. Waldinger, The Origin of
a Binary-Search Paradigm, Science of Computer Programming, 9:37-83, 1987.

[Manna and Waldinger 87B] Z. Manna and R. Waldinger, The Deduc-
tive Synthesis of Imperative LISP Programs, Sixth National Conference on

Artificial Intelligence, pp. 155-160, Morgan Kaufmann, 1987.

[Manna and Waldinger 87C] Z. Manna and R. Waldinger, How to Clear a
Block: A Theory of Plans, Journal of Automated Reasoning, 3:343-377, 1987.

[Manna and Waldinger 89] Z. Manna and R. Waldinger, The Logical Basis
for Computer Programming, Volume II: Deductive Systems, Addison-Wesley,

to appear in 1989.

[Qian and Waldinger 881 X. Qian and R. Waldinger, A Transaction Logic
for Database Specification, Special Interest Group on Management of Data

'88, pp. 243-250, ACM, 1988.

[Waldinger 77] R. Waldinger, Achieving Several Goals Simultaneously, in
E.W. Elcock and D. Michie, editors, Machine Intelligence 8: Machine Repre-

sentations of Knowledge, pp. 94-136, Ellis Horwood, 1977.

[Waldinger 87] R. Waldinger, The Bomb in the Toilet, Computational In-
telligence, 3(3):220-221, 1987.

5

f'

Journal of Automated Reasoning 3 (1987) 343-377. 343
C 1987 by D. Reidel Publishing Compan.

How to Clear a Block:
A Theory of Plans*

ZOHAR MANNA
Computer Science Department, Stanford University. Stanford. CA 94305. U.S.A.

RICHARD WALDINGER
Artificial Intelligence Center, SRI International. 333 Ravenswood Ave.. Menlo Park, CA 94025, U.S.A

(Received: I January 1987) -"

eProblems in<ommonsense and robot planning are approached by methods adapted from program
synthesis rese vch; planning is regarded as an application of automated deduction. To support this
approach. we introduce a variant of situational logic, called plan theory, in which plans are explicit objects.

A machine-oriented deductive-tableau inference system is adapted to plan theory. Equations and
equivalences of the theory are built into a unification algorithm for the system. Frame axioms are built into
the resolution rule.

Special attention is paid to the derivation of conditional and recursive plans. Inductive proofs of
theorems for even the simplest planning problems. such as clearing a block, have been found to require
challenging generalizations. -

1. Introduction

For many years, the authors have been working on program synthesis, the automated
derivation of a computer program to meet a given specification. We have settled on
a deductive approach to this problem, in which program derivation is regarded as a
task in theorem proving (Manna and Waldinger [80]. [85a]). To construct a program,
we prove a theorem that establishes the existence of an output meeting the specified
conditions. The proof is restricted to be constructive, in that it must describe a
computational method for finding the output. This method becomes the basis for the
program we extract from the proof.

For the most part, we have focused on the synthesis of applicative programs. which
yield an output but produce no side effects. We are now interested in adapting our
deductive approach to the synthesis of imperative programs, which may alter data
structures or produce other side effects.

This research was supported by the National Science Foundation under Grants DCR-82-14523 and
DCR-85-12356. by the Defense Advanced Research Projects Agency under Contract N00039-84-C-021 I.
b the United Stieis Air Force Office of Scieniific Research under Contract AFOSR-85-0383. by the Office
of Naval Research under Contract N00014-84-C-010b. by United States Army Research under Contract
DAJA-45-84-C-0040. and by a contract from the International Business Machines Corporation.

Preliminary versions of parts of this paper were presented at the Eighrlh International Conference on
Automated Deduction. Oxford. England. July 1986. and the Workshop on Planning and Reasoning ahout
Actions, Timberline. Oregon. July 1986.

344 ZOHAR MANNA AND RICHARD WALDINGER

Plans are closely analogous to imperative programs, in that actions may be
regarded as computer instructions, tests as conditional branches, and the world as a
huge data structure. This analogy suggests that techniques for the synthesis of
imperative programs may carry over into the planning domain. Conversely, we may
anticipate that insights we develop by looking at a relatively simple planning domain.
such as the blocks world, would then carry over to program synthesis in a more
complex domain, involving array assignments, destructive list operations, and other
alterations of data structures.

Consider the problem of clearing a given block, where we are not told whether the
block is already clear or, if not, how many blocks are above it. Assume that we are
in a blocks world in which blocks are all the same size, so that only one block can fit
directly on top of another, and in which the robot arm may lift only one block at a
time. Then we might expect a planning system to produce the following program:

if' clear(a)

makeclear(a) then A
else makeclear(hat(a)):

put(hat(a). table).

In other words, to clear a given block a (the argument), first determine whether it is
already clear. If not. clear the block that is on top of block a. and then put that block
on the table. Here A is the empty sequence of instructions. corresponding to no action
at all, and hat(a) is the block directly on a, if one exists. The action put(u. v) places
the block u on top of the object v.

Note that the makeclear program requires a conditional (if-then-else) and a recur-
sive call to makeclear itself. Planning systems have often attempted to avoid con-
structing plans using these constructs by dealing with completely known worlds. Had
we known exactly how many blocks were to be on top of block a. for example. we
could have produced a plan with no conditionals and no recursion. Once we begin to
deal with an uncertain environment, we are forced to introduce some constructs for
testing and for repetition.

A fundamental difficulty in applying a theorem-proving approach to plan construc-
tion is that the meaning of an expression in a plan depends on the situation, whereas
in ordinary logic the meaning of an expression does not change. Thus, the block
designated b,, hat(a) or the truth-value designated by clear(a) may change from one
state to the next. The traditional approach to circumventing this difficulty relies on
a situational logic, i.e.. one in which we can refer explicitly to situations or states of
the world.

2. The Trouble with Situational Logic

In this section, we describe conventional situational logic and point out some of its
deficiencies when applied to planning. These deficiencies motivate the introduction of
our own version of situational logic, called 'plan theory'.

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 345

2.1. CONVENTIONAL SITUATIONAL LOGIC

Situational logic was introduced into the literature of computer science by McCarthy
[63]. A variant of this logic was incorporated into the planning system QA3 (Green
[691). In the QA3 logic, function and predicate symbols whose values might change
were given state arguments. Thus, rather than speaking about hat(x) or clear(x), we
introduce the situational function symbol hat'(w, x) and the situational predicate
symbol Clear(w, x), each of which is given an explicit state argument w: for example.
hat'(w. x) is the block on top of block x in state w. Actions are represented as
functions that yield states, for example. put'(w, x, Y) is the state obtained from state
w by putting block x on object y.

Facts about the world may be represented as axioms in situational logic. For
example, the fact that the hat of an unclear block is on top of the block is expressed

by the axiom

if not Clear(w. x)

then On(w, hat'(w, x). x).

Actions can also be described by situational-logic axioms. For example. the fact

that after block x has been put on the table, block x is indeed on the table is expressed
by the axiom

if Clear(w, x)
then On(put'(w, x, table), x. table).

In a conventional situational logic, such as the QA3 logic or the similar logic of the
system PROW (Waldinger and Lee [691), to construct a plan that will meet a specified
condition, one proves the existence of a state in which the condition is true. More
precisely, let us suppose that the condition is of the form Also, a. :1. where so is the
initial state, a the argument or input parameter. and : the final state. Then the theorem
tu ', proved is

(Vs0)(Va)(3:).2[so, a. :1.

For example. the plan to clear a block is constructed by proving the theorem

(Vs,)(Va)(:) Clear(:. a).

From a situational-logic proof of this theorem. using techniques for the synthesis of
applicative programs, one can extract the program

if Clear(s,. a)

makeelear'(s,, a) = then s,
else let s, be makeclear'(so, hat'(s, a)) in

put'(s, hat'(s, a), table).

This program closely resembles the makeclear program we proposed initially, except
that it invokes situational operators, which contain explicit state arguments.

346 ZOHAR MANNA AND RICHARD WALDINGER

monkey

a b
Fig I The Monkey, the Banana. and the Bomb

EXECUTABLE AND NONEXECUTABLE PLANS

It would seem that, by regarding plans as state-producing functions, we can treat an
imperative program as a special kind of applicative program and use the same
synthesis methods for both. In other words, we can perhaps extract programs from
situational-logic proofs and regard these programs as plans. Unfortunately, there are
some programs we can extract from proofs in this formulation of situational logic that
cannot be regarded as plans.

For example. consider the problem illustrated in Figure I. The monkey is presented
with two boxes and is informed that one box contains a banana and the other a bomb.
but he is not told which. His goal is to get the banana, but if he goes anywhere near
the bomb it will explode. As stated, the problem should have no solution. However.
if we formulate the problem in conventional situational logic, we can prove the
appropriate theorem.

(Vso) (3z) Hasbanana(:).

The 'program' we extract from one proof of this theorem is

(if Hasbanana(goto'(s , a))

getbanana(s) - tltil goto'(s,. a)

else goto'(s, b).

According to this plan. the monkey should ask whether, if it were to go to box a.

it would get the banana) If so. it should go to box a: otherwise, it should go to box
h. We cannot execute this 'plan' because it allows the monkey to consider whether a
given proposition Hashananu is true in i hpothetical state goto'(s, a). which is
different from the current state s0 .

We would like to restrict the proofs in situational logic to be constructive, in the
sense that the programs we extract should correspond to executable plans. This kind
of consideration has influenced the design of our version of situational logic, called
plan theory.

* OW TO CLEAR A BLOCK: A THEORY OF PLANS 347

3. Plan Theory

In plan theory we have two classes of expressions. The static (or situational) expressions
denote particular objects, states, and truth-values. For example. the static expressions
hat'(s, b), Clear(s, b), and put'(s. h, c) denote a particular block, truth-value, and
state, respectively (where b and c denote blocks and s denotes a state). We shall also
introduce corresponding fluent terms, which will not denote any particular object.
truth-value, or state, but which will designate such elements with respect to a given
state. For example, the fluent terms

hat(d). clear(d). and put(d, d)

will only designate a block. truth-value, or state, respectively, with respect to a given
state (where d and d are themselves fluent terms that designate blocks).

Fluent terms themselves do not refer to any state explicitly. To see what element
a fluent term e designates with respect to a given state s, we apply a linkage operator
to s and e. obtaining a static expression. We use one of three linkage operators.

s:e, s::e, or s:e.

depending on whether e designates an object. truth-value, or state, respectively. For
example, the static expressions

s:ha(d), s::clear(d), and s put(d d)

will indeed denote a particular block, truth-value, and state, respectively.
While we shall retain static expressions as specification and proof constructs, we

shall restrict our proofs to be constructive in the sense that the programs we extract
from them will contain no static expressions. but only fluent terms. Because fluent
terms do not refer to states explicitly, this means that the knowledge of the agent will
be restricted to the impi. -it current state: it will !ie unable to tell what. say. the hat of
a given block is in a hypothetical or future state, In this way, we ensure that the
programs we extract may be executed as plans. Nonplans. such as the gethanana
.program' mentioned above, will be excluded.

Now let us describe plan theory in more detail.

3 1 ELEMENTS OF PLAN THEORY

Plan theory is a theory in first-order predicate logic that admits several sorts of terms.

0 The static (situational) terms, or s-terms, denote a particular element. The.
include
q object s-terms. which denote an object. such as a block or the table.
U state s-terms. which denote a state.

For example. hat'(s. h,) is an object s-term and put'(s. h. c) is a state s-term, if s is a

state s-term and h and c are object s-terms.

348 ZOHAR MANNA AND RICHARD WALDINGER

0 The static (situational) sentences, or s-sentences, denote a particular truth-
value.

For example, Clear(s, b) is an s-sentence, if s is a state s-term and b an object s-term.

* Thefluent terms, or .'-erms. only designate an element with respect to a given

state. They include
" object f-terms, which designate an object with respect to a given state.

" propositional f-terms, which designate a truth-value with respect to a given
state.

" plan f-terms, which designate a state with respect to a given state.

For example, hald). clear(d). and put(d, d) are object, propositional. and plan
f-terms, respectively. The plan f-constant A denotes the empty plan.

Object f-terms denote object fluents, propositional f-terms denote propositional
fluents. and plan f-terms denote plans. We may think of object fluents, propositional
fluents, and plans as functions mapping states into objects, truth-values, and states.
respectively. Syntactically. however, they are denoted by terms, not function symbols.

To determine what elements these terms designate with respect to a given state, we

invoke the in function ':', the in relation '::', and the execution function

3,2 THE in FUNCTION''

If s is a state s-term and e an object f-term.

s:e

is an object s-term denoting the object designated hv- e in state s. For example,
s(:hat(d) denotes the object designated by the object f-term hat(d) in state s,

In general, we shall introduce object f-function symbolsf(u u,) and object

!-function symbols f'(w, x, x, together. whereftakes object fluents u1
u, as arguments and yields an object fluent, while f' takes a state w and objects
x. - . v,, as arguments and yields an object. The two symbols are linked in each

case by the object linkage axiom

V :.'u...... u = . (it. w u1 i: u) (object linkage)

(Implicitly. varables in axioms are universally quantified. For simplicity, we omit sort

conditions such as state(w) from the axioms.)
For example, corresponding to the object f-function hat(u). which yields a block

fluent, we have an object s-function hat'(w, x)., which yields a fixed block. The

appropriate instance of the object linkage axiom is

w hat(u) = hat(v, w: u).

Thus r: hat(d) denotes the block on top of block s: d in state s. (This is not necessaril,

the same as the block on top of s: d in some other state s.)

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 349

3.3. [HE in RELATION'::'

The in relation :: is analogous to the in function :, If s is a state s-term and e a
propositional f-term.

s: e

is a proposition denoting the truth-value designated by e in state s. For example,
so :: clear(d) denotes the truth-value designated by the propositional f-term clear(d) in
state SO.

In general, we shall also introduce propositional f-function symbols r(u. u)
and s-predicate symbols R(w. x, , x.) together, with the convention that r takes
object fluents u, u., as arguments and yields a propositional fluent, while R takes
a state w and objects x x, as arguments and yields a truth-value. The two
symbols are linked in each case by the propositional-linkage axiom

w::r(u u,) = R(w. w: u, . w: u.) (propositional linkage)

For example, corresponding to the propositional f-function clear(u), which yields
a propositional fluent, we have an actual relation Clear(w. x), which yields a truth-
value. The instance of the propositional-linkage axiom that relates them is

R:: clear(u) = Clear(w. w: u).

Thus s:: clear(d) is true if the block s: d is clear in state s.

3.4. THE EXECUTION FUNCTION,'

If s is a state s-term and p a plan f-term.

s~p

is a state s-term denoting the state obtained by executing plan p in state s. For example.
s;put(d. d) is the state obtained by putting block d on object d in state s.

In general. we shall introduce plan f-function symbols g(u, u,) and state
s-function symbols g'(w. x) together, where g takes object fluents u ...
u, as arguments and yields a plan, while g' takes a state w and objects x x, as
arguments and yields a new state. The two symbols are linked in each case by the plan
linkage axiom

wg(u.. u) = g'(w. Vt: ul. u,) (plan linkage)

For example. corresponding to the plan f-function put(u. v). which takes object
fluents u and v as arguments and produces a plan. we have a state s-function
put'(K-, x. v). which takes a state w and the actual objects x and v as arguments and
produces a new state. The appropriate instance of the plan linkage axiom is

w: put(u. v) = put'(w. wu w : v).

350 ZOHAR MANNA AND RICHARD WALDINGER

The empty plan A is taken to be a right identity under the execution function; that
is,

w;A = w (empy plan)

for all states w.

3.5. RIGID DESIGNATORS

Certain fluent constants (f-constants) are to denote the same object regardless of the
state. For example, we may assume that the constants table and banana always denote
the same objects. In this case. we shall identify the object fluent with the correspond-
ing fixed object.

An object f-constant u is a rigid designator if

w: u = u (rigid designator)

for all states w.
For example, the fact that table is a rigid designator is expressed by the axiom

w : table = table

for all states K. In the derivation of a plan, we shall assume that our argument (or
input parameter) a is a rigid designator. On the other hand. some f-constants, such
as here, the-highest-block, or the-president, are likely not to be rigid designators.

3.6 THE COMPOSITION FUNCTION'::'

We introduce a notion of composing plans.

If p, and p. are plan f-terms, p, : p2 is the composition of p, and p..

Executing p, ;p2 is the same as executing first p, and then p2. This is expressed by the
plan composition axiom

w (p, ;.) = (w ;p1): p. (plan composition)

for all states w and plans p, and p,. Normally we shall ignore the distinction between
the composition function - and the execution function :- writing, for both and relying
on context to make the meaning clear.

Composition is assumed to be associative: that is

(pI ;::P.) :,P; 1 A :;(p: ;:p') (associatiritY)

for all plans p. p, and pl. For this reason, we may write p, :: p t :.p, without
parentheses.

The empty plan A is taken to be the identity under composition. that is,

A;.p = p,;A = p (identity)

for all plans p.

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 351

3.7. SPECIFYING FACTS AND ACTIONS

As in conventional situational logic, facts about the world may be expressed as plan
theory axioms. For example, the principal property of the hat function is expressed
by the hat axiom

if not Clear(w. y)

then On(w, hat'(w.), y) (hat)

for all states w and blocks Y. (As usual, for simplicity, we omit sort conditions such
as state(w) from the antecedent of the axiom.) In other words, if block v is not clear.
its hat is directly on top of it. (If v is clear, its hat is a 'nonexistent' object. not a block.)
It follows, if we take y to be w v and apply the propositional and object linkage
axioms, that

if not(w :: clear(v))
then w:: on(hat(v). v).

for all states w and block fluents v. Other axioms are necessary for expressing other
properties of the hat function.

The effects of actions may also be described by plan theory axioms. For example.
the primary effect of putting a block on the table may be expressed by the put-table-on
axiom

if Clear(w,. x)
then On(put'(w, x, table), x. table) (put-table-on)

for all states v and blocks x. The axiom says that after a block has been put on the
table, the block will indeed be on the table. provided that it was clear beforehand.
(The effects of attempting to move an unclear block are not specified and are therefore
unpredictable.) It follows, if we take x to be w: u and apply the linkage axioms plus
the rigidity of the designator table, that

if w:: clear(u)

then On(w -put(u, table), w: u, table)

for all states w and block fluents u.
Note that, in the consequent of the above property. we cannot conclude that

(w put(u. table)):: on(u, table),

that is, and after putting u on the table. u will be on the table. This is because u is a
fluent and we have no way of knowing that it will designate the same block in state
w ;put(u, table) that it did in state w. For example, if u is taken to be hat(a). the
property allows us to conclude that. if s, :: clear(hat(a)). then

On(s. : put(hat(a), table). s, : hat(a), table).

In other words, the block that was on block a initially is on the table after execution
of the plan step. On the other hand, we cannot conclude that

(s. ;put(hat(a). table)):: on(hat(a), table).

352 ZOHAR MANNA AND RICHARD WALDINGER

that is. that hat(a) is on the table after the plan step has been executed. In fact, in this
state, a is clear and hat(a) no longer designates a block.

3.8. PLAN FORMATION

To construct a plan for achieving a condition ,2[s0, a. :], where s, is the initial state.
a the input object. and : the final state, we prove the theorem

(Vs,)(Va)(3:,) 2[s. a. s,. : I.

Here z, is a plan variable. In other words, we show, for any initial state s,, and input
object a. the existence of a plan :, such that. if we are in state s, and execute plan :,.
we obtain a state in which the specified condition .2 is true. A program producing the
desired plan is extracted from the proof of this theorem. Informally. we often speak
of this program as a plan itself, although in fact it computes a function that onl.
produces a plan when it is applied to an argument.

Note that. in the QA3 version of situational logic, one proves instead the theorem

(Vs,)(Va)(3:)2 [s,,. a. :].

The phrasing of the theorem in plan theory ensures that the final state : can indeed
be obtained from .s, by the execution of a plan :,. For example. the plan for clearing
a block is constructed by proving the theorem

(Vs,,) (Va) (3:,)[Clear(s, : :,. a)).

In other words, the block a is to be clear after execution of the desired plan :, in the

initial state s.
In the balance of this paper. we present a machine-oriented deductive system for

plan theory in which we can prove such theorems and derive the corresponding plans
at the same time. We shall use the proof of the above theorem, together with the
concomitant derivation of the makeclear plan. as a continuing example.

4. The Plan-Theory Deductive System

To support the synthesis of applicative programs, we developed a deductive-tableau
theorem-proving system (Manna and Waldinger [80], [85a]). which combines non-
clausal resolution. well-founded induction, and conditional term rewriting within a
sinle framework. In this paper. we carry the s~s~em over into plan theory- Although
a full intncduction to the deduct ive-!abieau system is not possible here. we describe
just enough to make this paper self-contained.

4.1. DEDUCTIVE TABLE.AUX

The fundamental structure of the system, the deductive tableau, is a set of rows, each
of which contains a plan theory sentence. either an assertion or a goal. and an

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 353

optional term, the plan entry. We can assume that the sentences are quantifier-free.
Let us forget about the plan entry for a moment.

Under a given interpretation, a tableau is true whenever the following condition
holds:

If all instances of each of the assertions are true,
then some instance of at least one of the goals is true.

Thus. variables in assertions have tacit universal quantification, while variables in
goals have tacit existential quantification. In a given theory. a tableau is valid if it is
true under all models for the theory.

To prove a given sentence valid, we remove its quantifiers (by skolemization) and
enter it as the initial goal in a tableau. Any other valid sentences of the theory that
we are willing to assume may be entered into the tableau as assertions. The resulting
tableau is valid if and only if the given sentence is valid.

The deduction rules add new rows to the tableau without altering its validity: in
particular, if the new tableau is valid, so is the original tableau. The deductive process
continues until we derive as a goal the propositional constant true. which is always
true, or until we derive as an assertion the propositional constant false. which is
always false. The tableau is then automatically valid: hence the original sentence is
too.

In deriving a plan f(a). we prove a theorem of form

(Vs.) (Va)(3:,)2 so. a. so :,].

In skolemizing this, we obtain the sentence

.2 [so. a. so :, 1,

where so, and a are skolem constants and _- is a variable. (Since this sentence is a
theorem or goal to be proved, its existentially quantified variables remain variables.
while its universally quantified variables become skolem constants or functions. The
intuition is that we are free to choose values for the existentially quantified variables.
whereas the values for the universally quantified variables are imposed on us. The
situation is precisely the opposite for axioms or assertions.)

To prove this theorem, we establish the validity of the initial tableau

assertions goals plan: s,. f(a)

a[so, a. so , so : :1

For example. the initial tableau for the makeclear derivation is

assertions goals plan:
so makeclear(a)

1I. Clear(so ' . a) so

354 ZOHAR MANNA AND RICHARD WALDINGER

Certain valid sentences of plan theory, such as the axioms for blocks-world actions.
would be included as assertions.

4.2. PLAN ENTRY

Note that the initial tableau includes a plan entry s, z. The plan entry is the
mechanism for extracting a plan from a proof of the given theorem. Throughout the
derivation, we maintain the following correctness property:

For any model of the theory, and for any goal [or assertion] in the tableau,
if some instance of the goal is true [assertion is false],
then the corresponding instance s0 ; t of the plan entry (if any)

will satisfy the specified condition .2[so, a, so, t].

In other words, executing the plan t produces a state s, ; t that satisfies the specified
condition. The initial goal already satisfies the property in a trivial way, since it is the
same as the specified condition. Each of the deduction rules of our system preserves

this correctness property, as well as the validity of the tableau.
If a goal [or assertion] has no plan entry, this means that any plan will satisfy the

specified condition if some instance of that goal is true [assertion is false]. In other
words, we do not care what happens in that case.

4.3. BASIC PROPERTIES

It may be evident that there is a duality between assertions and goals; namely, in a

given theory,

a tableau that contains in assertion .-d is valid
if and only if

the tableau that contains instead the goal (not -/), with the same plan entry. is
valid.

On the other hand.

a tableau that contains a goal 4 is valid
if and only if

the tableau that contains instead the assertion (not 4), with the same plan entry.
is valid.

This means that we could shift all the goals into the assertion column simpl. b%
negating them. thereby obtaining a refutation procedure, the plan entries and the
correctness properties would be unchanged. (This is done in conventional resolution
theorem-proving systems.) Or we could shift all the assertions into the goal column

by negating them. Nevertheless, the distinction between assertions and goals has
intuitive significance, so we retain it in our exposition.

Two other properties of tableaux are useful. First, the variables of any row in the
tableau are dummies and may be renamed systematically without changing the
tableau's validity or correctness. Second. we may add to a tableau any instance of an\
of its rows. preserving the validity and correctness.

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 355

4.4. PRIMITIVE PLANS

We want to restrict our proofs to be sufficiently constructive so that the plans we
extract can be executed. For this purpose, we distinguish between primitive symbols.
which we know how to execute, and nonprimiive symbols, which we do not. For
example. we regard the function symbols : and hat' and the predicate symbols :: and
Clear as nonprimitive. because we do not want to admit them into our plans. On the
other hand. we regard the f-function symbols hat and clear as primitive.

In deriving a plan, we shall maintain the primitivity property, namely, that the final
segment t of the plan entry s ;t for any assertion or goal of the tableau shall be
composed entirely of primitive symbols. Otherwise the new row is discarded.

4.5. EXTRACTING THE PLAN

As we have mentioned, the deductive process continues until we derive either the final
goal true or the final assertion false. At this point, the proof is complete and we may
extract the plan

f(a) - t,

where s, : t is the plan entry associated with the final row.
This is because we have maintained the correctness property that the plan entry of

any goal (or assertion] must satisfy the specified condition 2[s,. a. s, : t] when that
goal (or assertion] is true (or false]. Since the truth symbol true is always true and the
truth symbol false always false, the plan entry s, . t will always satisfy the specified
condition. We know also that the extracted plan will be executable, because we have
maintained the primitivity property. which requires that the plan term i be expressed
exclusively in terms of primitive symbols. (Should the final plan still contain variables.
these may be replaced by any primitive terms.)

In the next section we begin to introduce the deduction rules of our system.
emphasizing those that need to be adapted for plan theory or that play a major role
in plan derivations.

5. Formation of Conditionals

The resolution rule accounts for the introduction of conditionals, or tests, into the
derived plan and also is important for ordinary reasoning. Because a special adapta-
tion of the rule is necessary to form conditionals in plan theory without introducing
the nonprimitive predicate symbol :: into the plan. we first consider applications of the
rule that do not form conditionals.

5 I THE RESOLUTION RULE: GROUND VERSION

We begin by disregarding the plan entries and considering the ground version. in
which there are no variables. We describe the rule in a tableau notation,

356 ZOHAR MANNA AND RICHARD WALDINGER

assertions goals

,9 [true] or .4[false]

More precisely, if our tableau contains two assertions. .F[.0] and ([-[J,1. which share
a common subsentence :, we may replace all occurrences of.9 in .9.9] with true.
replace all occurrences of.9 in 'V[9] withfaLve. take the disjunction of the results, and
(after propositional simplification) add it to the tableau as a new assertion.

The rationale for this rule is as follows. We suppose that ;F [,I and S[.9] are true
under a given model, and show that (.iF[true] or S[false) is then also true. We
distinguish between two cases. In the case in which ,9 is true. because .9[9J is true.
its equivalent ,f[true] is true. On the other hand. in the case in which .0 is false.
because f[] is true, its equivalent 'l[false] is true. In either case, the disjunction

(,F[true] or 1[false]) is true.
Note that the rule is asymmetric in its treatment of.'[.] and 'f[l.]. In fact. it can

be restricted according to the 'polarity' of the occurrences of .). the common sub-
sentence. We may require that some occurrence of,9 in .9[9] be of negative polurirn
(i.e.. it must be within the scope of an odd number of implicit or explicit negations)
and that some occurrence of .9 in ',[.9] be of positive polartv (i.e.. it must be within
the scope of an even number of implicit or explicit negations). The antecedent of an
implication is considered to be within the scope of an implicit negation. Thus. in
applying the rule between two assertions

t(f P then Q) and (P or R).

the role of ;F [.9] must be played by (if P- then Q). in which P has negative polarit,
and the role of ._01 by (P' or R). in which P has positive polarity. yielding the ne"
assertion

(i(true ,Ien Qi or (Jaise or Ri.

that is. after proposifonal simplification. (Q or R). Reversing the roles of the twAo
assertions yiels the trivial assertion true, which is of no value in the proof. This
strateg has been shown by Murray [82] to retain completeness for first-order logic.

If only one of the goals has a plan entry. the new goal is given the same plan entr\.
(The case in which both goals have plan entries requires the introduction of a
conditional plan and is treated separately.)

We have applied the rule between two assertions but, by duality, the rule can just
as well be applied between two goals or between an assertion and a goal. In these
cases, a new goal is introduced, which is a conjunction rather than a disjunction. In
applying the polarity strategy. each goal must be considered to be within the scone
of an implicit negation.

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 357

We assume that all the sentences in a tableau are subjected to full propositional
simplification. Rules such as

and true - .9
and ?- 9

not (not.9) -?)

are applied repeatedly wherever possible before an assertion or goal is entered.
Simplification is always necessary when the resolution rule is applied.

5 2, THE RESOLUTION RULE: GENERAL VERSION

We have up to now been considering the ground case, in which the sentences have no
variables. In the general case, the rule may be expressed as follows:

assertions goals

Y 6 [true] or 6 [false]

More precisely. let us suppose that our tableau contains two assertions .9(9J and
4 [O']. which have been renamed so that they have no variables in common. The
subsentences .O and .O' are not necessarily identical, but they are unifiable, with a
most-general unifier 0: thus .96 = .P'0. Then we may apply 0 to fl.P] and 1[0].
replace all occurrences of -0 in (,: [,])0 with true. replace all occurrences of .'0 in
0f[.9'])0 with .false. take the disjunction of the results, and (after propositional
simplification) add it to our tableau as a new assertion. In other words, after applying
the most-general unifier 0, we use the ground version of the rule. If exactly one of the
rows has a plan entry t. the appropriate instance tO of that entry is inherited by the
new row. If it turns out that tO contains nonprimitive symbols, the new row is
discarded to maintain the primitivity property.

In general, there may be several unifiable subsentences .i #, . . in .9 and
several unifiable subsentences .0'. in 4. The substitution 0 must then be a

most-general unifier for all these sentences.

5.3 EQUATIONAL UNIFICATION

Typically our knowledge of the world is represented by assertions in the tableau. It is
possible, however, to build certain of the equations and equivalences of a theory into
an equational-unification algorithm (Fay [791: see also Hullot [80]. Martelli and Rossi
[861). so they need not be included among the assertions. Properties of plan theor- ma
be represented in this way. including the linkage, rigidity, and composition axioms.

For example, consider the sentences

Cl'ar(., :-. a) and ('Clar put'(O. .x. iahh '. ..

358 ZOHAR MANNA AND RICHARD WALDINGER

Regarded as expressions in pure first-order logic, these sentences are not unifiable.
because the function symbols : and put' are distinct. Suppose we apply the substitution

a. 4, ,- s0, x -- so : u. :1 '- put(u. table),.

Then we obtain the sentences

Clear(s ;put(u. table), a) and Clear(put'(s,, sn : u, table), a).

respectively. These are distinct sentences, but in plan theory we have

Clear(s, : put(u. table), a) Clear(put'(so, s, : u. s, : table), a)

(by the plan linkage axiom)

Clear(put'(s, so :u. table). a)

(by the rigidity of the designator table).

In 1-iort. by applying the substitution we have obtained sentences equivalent in plan
theory. This substitution is returned by the equational-unification algorithm. We shall
say that the two sentences have been unified invoking the two properties cited.

Most-general equational unifiers are not unique. For example. consider the sub-
stitution

y ,- a. w,- s. :z,. x - (51) :Z)u. zD'-zput(u. table):,.

Applying this substitution to the same two sentences. we obtain

Clear(s, :(z: : put(u. table)), a)

and

Clear(put'(s, : . (sn : ,) u, table), a).

respectively. But

Clear(s :(:. "put(u. table)), a) Clear((s. .:z)put(u. table). a)

(by the plan composition axiom)
- Clear(put'(so : .,. (s. :. : u. (s,, :.) ta !'. a)

(by the plan linkage axiom)

- Clear(put'(s. :- (s,, : :,): u. table), a)

(by the rigidity of the designator tahh'l.

In general. the equational-unification algorithm may yield an infinite stream of
most-general unifiers. We obtain a different resolvent for each of these substitutions.

54. FXAMPLES

Let us illustrate the resolutirn rule bith Art example from he inakeclear derivation.

Example reohlttun). Suppose our tableau contains the initial goal

assertions goals plan:

v ,, makech'arw)

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 359

and the put-tahle-clear axiom

if (On(v, r..r) and Clear(w. v)

then IClear(put'(tv. -1. table), Y)

The axiom asserts that. after a block has been put on the table. the block underneath
it is clear.

As we have seen above, the two boxed subsentences are equationally unifiable in
the blocks-world theory. One of the most-general unifiers is

:v - a. it .- s,, - - (sB.:z.):u. z, -- :.;put(u. table):.

The polarity of the boxed subsentences is indicated by their annotation. (The goal is
negative because goals are within the scope of an implicit negation.) Let us appl. the
resolution rule. taking .) and ."' to be the boxed subsentences and 9 to be the above
unifier. Recall that. according to the duality property. we can shift the assertion into
the goal column by negating it. We obtain

true
and

.On (s,, . . .,,): u. a) and s" putu. table)
not (Clear(s,, ..(z.) u)

then hi/se

which simplifies propositionally to

2. On(s' . (s,, it. ,1) and I
Clearts,, _-'. (s, :,) " 1) s : put) u. able

In other words, if after execution of some plan :.. some block u is on block a but is
itself clear, we can achieve our specified condition b first executing plan -. and then
putting block u on the table. U

To present another step of the mak'lchur derivation, we give a further example of
branch-free resolution.

Evample (r'volrimnt, The boxed subsentence of the new goal.

. , "-.:. I i z.t" u and
S" liputtu. tahh,

Clears,, (:-. (s,, .: It

36V ZOHAR MAN% Nx -. 0 ,CjiARD WAILDINGFR

unifies equationally with the boxed subsentence of the hat axiom.

if' not Clear(%%. Y)

then IOn~w. hat'(Kw. _I). I,)-

with a most-general unifier

: . -- a, u - hat(a). w - s,

The equational-unification algorithm here invokes the equalities

(So :,): hat(a) = hat'(s, -,z (so: :): a).

which is an instance of the object linkage axiom. and

(s,'-_:,): a = a.

which is a consequence of the rigidity of the input parameter a. Appling
resolution rule, we obtain (after propositional simplification)

3. Clear(s ::,. (s :.): hat(a)) and s, :.:,'

not Clear(s, :. a) put(hat(a). tablel

In other words, if. after execution of some plan step :. the block a is not clear 'u.
the block har(a) is. we can achieve our specified condition by first executing plai-

and then putting hat(a) on the table. U

5 5 RESOLUTION WITH CONDITIONAL FORMATION

In applying the resolution rule between two rows. both of which have plan entries. v.c

must generate a conditional plan entry. If we applied the ordinary resolution rule !-

such a case. we would be forced to introduce tests that contain the predicate symbol
We would have no way of executing the resulting nonpnmitive plans. To axo,

introducing nonprimitives into the plan entry, we employ the following resolut.
rule. We present the ground version of the rule as it applies to two goals:

assertions goals plan- s, f(a)

.[s :: P] s.: e,

Is:: ::p] S:e,

j7 [true and '4V[/alsej I s: (hell ,
let' ' .

HOW TO CLEAR A BLOCK. A THEORY OF PLANS 361

In other words, suppose our tableau contains two goals, botn uf which rezer to the
truth of the same propositional fluent p in a common state s. Suppose further that
is an initial segment of the plan entries for each of the two goals. Then we can
introduce the same new goal as the previous branch-free version of the rule. The plan
entry associated with this goal has as its initial segment the common state s ol thc
given plan entries. Its final segment is a conditional whose test is the matching
propositional fluent p and whose then-clause and else-clause are the final segments e,
and e,. respectively, of the given plans.

The rationale for this plan entry is as follows. We suppose that the new goal
(,F [true] and i4[false]) is true and show that the associated plan entry satisfies the
specified condition.

We distinguish between two cases. In the case in which s::p is true, because the
conjunct f9[true] is true, the given goal l[s::pJ is also true, and hence the associated
plan entry s:e, satisfies the specified condition. In this case, the conditional plan

s .if p then e, else e,)

will also satisfy the condition because. when executed in state s. the result of the test
of p will be true.

Similarly. in the case in which s::p is false, the given goal '1[s::p] is true. the
associated plan entry s:e. satisfies the specified condition, and the conditional plan
will also satisfy the condition. Thus. in either case the conditional plan satisfies the
specified condition.

Of course, the rule applies to assertions as well as to goals. The polarity strategy
may be imposed as before. We have given the ground version of the rule: in the general
version. in which the rows may have variables, we first apply a most-general unifier
of the subsentences s::p and s' ::p . after renaming as necessary: we then use the
ground version of the rule.

We illustrate this with an example.

Example (resolution with conditionalformation). Suppose our tableau contains the two
goals

goals plan:
i s,, . akech, ar(a)

clear(a) tn., c':, A ri

s, . A ,nakeclear(hat(a) 1:
not (s, A):: clear() I put(hat(a). tahhe

The boxed subsentences are unifiable, with a most-general unifier - A. The
unified subsentences both refer to the truth of the same propositional fluent lcaral in
a common state, the state , .A. The state v,.. \ is in initial segmeni for the plan entries

362 ZOHAR MANNA AND RICHARD WALDINGER

of each of the given goals. Therefore we can apply the resolution rule to obtain (after
propositional simplification)

7 if clear(a) I

true s, A A; then A
else makeclear(hat(a)):

put(hat(a), table)

Using equational unification, we can take advantage of properties of plan theory
in applying the resolution rule. For instance, we could apply the rule in this example
if our two goals were

Clear(so;,. a)

and

not(s0 :: clear(a))

to obtain the same result. (The first is our goal l.) This could be the final step of a
makeclear derivation. E

Let us remark that we could formulate a resolution rule without the restriction that
the common state be an initial segment of the plan entries. If these entries were s., and
s2. the plan entry for the derived goal could be taken to be

fS:': p then s else s,.

The unrestricted rule does preserve the validity and correctness of the tableau
However, because the nev, plan entry contains the nonprimitive symbol ::. the
row would have to be discarded immediately. This is why we are forced to restrict
the rule.

45t THEORY RESOLUTION RULE

We have seen that we can build equations and equivalences of a theory into the
resolution rule by using an equational-unification algorithm. Stickel [85] has
introduced a further extension of the resolution rule that enables it to behave as if
nonequational properties of the theory were built in, so that they ma'. be invoked as
required. We ntroduce a simplified version of Stickel's rule here. (The actual version
is more general.)

We consider the ground case and ignore plan entries for the moment, Lei us
suppose that .,' [.). 2 is a valid sentence of the theory. Then the theori resoluto,, rule.
inv)king the properti W [J], is as follows:

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 363

assertions goals

.,q []

not J [false, true] and

.S [true] and
I[Jalse]

According to the polarity strategy, we may assume that some occurrence of .o is
positive in .*, that some occurrence of J is negative in .,'. that some occurrence of
- in ,F is negative in the tableau, and that some occurrence of J in '' is positive in
the tableau: otherwise, other cases of the rule apply.

The soundness of the rule is evident, for we can derive an equivalent goal by two
applications of the ordinary resolution rule if we introduce the valid sentence
-41 [O. 2] as an assertion. The strategic benefit of the theory resolution rule is that. if
.Y is built into the rule. it is invoked only when needed, while if it is represented as
an assertion, it may have numerous irrelevant consequences-

We have presented the rule as it applies to two goals. By duality, the rule can just
as well be applied to two assertions or to an assertion and a goal. Also. we have
presented only the ground version of the rule. To apply the general version. we first
rename so that the given rows .: and 'q and the sentence .Y will have no variables
in common. We then apply a most-general unifier 0 that allows the ground version
of the rule to be applied to ;F0 and ':0. inv oking X0.

Example (theory resolution rule). Suppose we have incorporated into the theory
resolution rule the sentence

if Clear(w. x)

.,: then if ,)

then I Red(put'(w, x. table). Y)-

which is assumed to be valid in our theor, In other words, a red object will remain
red after a block has been put on the table.)

Suppose our tableau contains the rows

assertions goals

.51 Red(put'(s,. h. table), a)

1 L.K" Red(s,. a)

364 ZOHAR MANNA AND RICHARD WALDINGER

(In other words, we know that block a is red in state so, and we would like to show
that a is still red after block b has been put on the table.)

The boxed subsentences of these rows unify with the correspondingly boxed sub-
sentences of the sentence .f. The unifying substitution is

0: 1 y .- a,x r-- b, K' ,- so. .

Therefore we may apply the theory resolution rule. invoking the above property .#.

After the application of 0. the singly boxed subsentences play the role of.A, while the
doubly boxed subsentences play the role of .d. We obtain

(if Clear(so, b)
not then if true and

then false
true and
not false

which simplifies to

Clear(s b, b)

(in other words, it suffices to show that block b is clear in the initial state s..) U

The treatment of the plan entries is analogous to that for the ordinary resolution
rule. If both given rows have plan entries, the rule is restricted and a conditional plan
is introduced. We assume that an equational-unification algorithm is employed. Thus
the rule may also invoke built-in equations and equivalences of the theory in its search
for a unifying substitution. For example. -F above could be

Red(s, "puth. table). a)

if h and table are rigid designators.

5.7 THE FRAME PROBLEM

One obstacle to employing a situational logic is the so-called frame problem (see
McCarthy and Hayes [69]. Kowalski [791). In addition to specifying what relations are
changed by a given action. it is also necessary to provide frame axioms that state
explicitly what rejations are left unchanged.

For instance, we have provided the put-tahit.-On axiom, which states that. after a
block has been put on the table, that block is indeed on the table. This maN be
regarded as a primary axiom for the action. We must also provide an associated
put-table-on frame axiom, which states that the positions of other blocks remain
unchanged by the action, namely,

if Clear(w. x) and not(x =

then if On(w. Y..
then On(put'(w. x, tahle). Y..f)

HOW TO CLEAR A BLOCK, A THEORY OF PLANS 365

for all states w% blocks x and y, and objects . . If we admit other relations into our
theory, we must provide additional frame axioms indicating that these relations are
unchanged by the action, if indeed they are. For example. we might require a red
frame axiom

if Clear(w. x)

then if Red(w. y)

then Red(put'(K,, x, table), y)

(if block v is red before the action, it is red afterwards) and so forth.
It is clear that, in any rich theory, a large number of axioms must be introduced to

describe each action. If these axioms are expressed as assertions in our tableau, the
effect on the search space could be disastrous. For instance, suppose our goal is
actually Red(s,; :,, a). to make block a red. We can perfectly well apply the resolution
rule to this goal and the above red frame axiom, dbtaining the suggestion that putting
some block x on the table may help us make block a red, provided only that it is red
beforehand.

Aside from the strategic intrusiveness of the frame axioms, it seems fundamentally
wrong for a formalism to force us to spell out each one individually. We would like to
be able to give only the primary axioms for an action, and then say that all other
relations remain unchanged, unless a change is implied by these axioms. Although this

approach is intuitively clear, the technical obstacles to pursuing it appear formidable.
One possibility is to apply McCarthy's circumscription principle (see Lifschitz [851) or
some other form of 'nonmonotonic" reasoning.

We henceforth assume that the necessary frame axioms have been constructed.

perhaps by some circumscription-like mechanism. Rather than introduce these
axioms as assertions in the tableau, let us allow them and their consequences to be
invoked by the theory resolution rule.

Example (frame axiom). Suppose we have developed a goal

assertions goals plan

On(s, ;put(a. table), bbI) s,, .put(a. table)

and an assertion

In other words, we know that block h is on object f initially and would like to show
that it is still on b after block a is put on the table.

366 ZOHAR MANNA AND RICHARD WALDINGER

We cannot unify these sentences. However, the sentences do unify equationally with
the correspondingly boxed subsentences of the put-table-on frame axiom

if Clear(w. x) and not(x = v)

then if I Z
then On(put'(w. x. table). y.

In other words, if block .v is on object i in a given state, it is still on t' after block x
has been put on the table, provided that block x is clear in the given state and that
blocks x and v are distinct.

The unifying substitution is
v, s.f -6 ,s, x ,- a .

The equational-unification algorithm invokes the property

s, ;put(a, table) = put'(s,. so : a, s, : table),

which is an instance of the plan linkage axiom. and the rigidity of the designators a
and table. Therefore we may apply the theory resolution rule. invoking the put-table-
on frame axiom. to get

Clear(s0 , u) and not(a = b) so :put(a. table)

In other words, it suffices to show that block a is clear initially and that blocks a and
b are distinct. U

By building the frame axioms and their consequences into the theory resolution rule.
we have avoided the explosion of the search space that results if they are introduced
into the tableau as assertions.

5 8. RESOLUTION WITH EQUALITY MATCHING

Sometimes in an attempt to apply the resolution rule, two subsentences will fail to
unify completely but will 'nearly' unify: that is. all but certain pairs of subterms will
unify. In such cases, instead of abandoning the attempt altogether. it may be adxan-
tageous to go ahead and apply the rule but impose certain conditions upon the
conclusion. This is !he effect of applying the resolution rule with equality matching.

In its simplest (groundJ version. the rule may be expressed as follows:

assertions goals

,; 1-0 K s)]1

s[t >]

s - and .F [true] tind ?[false]

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 367

Here (s) and .#<t> are identical except that certain occurrences ofs in -- (s) are
replaced by tin ,9<1>. If they were completely identical, we could apply the ordinary
resolution rule to obtain the new goal (:F [true] and .#[]alse]). Instead, we obtain this
goal with the additional conjunct s = t. The treatment of the plan entry is analogous
to that for the original resolution rule.

Our rule is a nonclausal version of the E-resolution rule (Morris [69]) or the
RuE-resolution rule (Digricoli and Harrison [86]). In Manna and Waldinger [86], we
generalize the rule to allow more than one pair of mismatched terms and to employ
reflexive binary relations other than equality, but we shall not require these extensions
here.

In the nonground version. in which the sentences may contain variables, we apply
a substitution to the given rows and then apply the ground version of the rule to the
results. The substitution is the outcome of an abortive attempt to unify the subsen-
tences. We shall see that, for a given pair of sentences. the substitution we employ and
the pair of mismatched subterms we obtain are not necessarily unique. Some of the
strategic aspects of choosing the substitution and term pair are discussed by Digricoli
and Harrison [86].

Example (resolution with equality matching). Suppose our tableau contains the goal

Clear(s .:,. (s o : :,):ha(so

and Q(:,) put(hat(a). table)

and the assertion

if Rtwv. u)
then I Clear(wv.makeclear(u,, . "

The two boxed subsentences are not unifiable. However, if we apply the sub-
stitution

-u hat(a), w -- s0 .

we obtain the sentences

Clear, so ,. (st, : :,) :hail a))

and

Clear((s:,) makeclear(hat(a)). (s.. z): hat(a)).

Our mismatched terms are then

so::, and (s, :,);makeclear(hat(a)).

368 ZOHAR MANNA AND RICHARD WALDINGER

The conclusion of the rule is then (before simplification)

s, ::, = (s0 ;:.),makeclear(hat(a)) and
true and Q(z,) and so :2,

not (if R(so:, hat(a)) then false) put(hat(a). table)

On the other hand, if we apply the substitution

I w -- s,. *-- makeclear(u)},

the boxed subsentences become

Clear(so makeclear(u), (so ; makeclear(u)) : hat(a))

ind

Clear(so makeclear(u), so : u).

Our mismatched terms are then

(so rmakeclear(u)):hat(a) and s: u,

and the conclusion of the rule (after simplification this time) is then

(so. "rakeclear(u)) : hat(a) = s, : u
andso ; mlakecleariu),

Q(makeclear(u)) and R(so, u) pthtatbe

In applying resolution with equality matching, we have altered an ordinary unifica-
tion algorithm to return mismatched terms instead of failing. If we alter instead an
equational-unification algorithm, we ran invoke properties of our plan theory in our
search for near-unifiers.

6. Formation of Recursion

The mathematical-induction rule accounts for the introduction of the basic repetitive
construct - recursion - into the plan being derived. We employ well-founded induc-
tion. i.e., induction over a well-founded relation: this is a single. very general rule that
applies to many subject domains.

t : MATHEMATICAL-INDUCTION RULE

A well-founded relation -<, is one that admits no infinite decreasing sequences. ie..
sequences x,, x x...... such that

x, >, x, and x, >-, x, and

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 369

For instance the less-than relation < is well-founded in the theory of nonnegative
integers but not in the theory of real numbers. A well-founded relation need not be
transitive.

The instance of the well-jounded induction rule we require can be expressed as
follows (the general rule is notationally more complex):

Suppose that our initial tableau is

assertions goals plan: s, (a)

.3[so. a. so , SO :1

In other words, we are trying to construct a programf that. for a given input a. yields
a plan f(a) = :, satisfying our condition J[so, a. s0 ;z,]. According to the well-
founded induction rule. we may prove this under the induction hypothesis that. for
a given state it, and input u. the programf will yield a planf(u) satisfying the condition
2[w,: u. wf(u)], provided that the input w: u is less than the original input so : a.
that is. a. with respect to some well-founded relation. More precisely, we may add to
our tableau. as a new assertion, the induction hypothesis

if < i. v: u> , < so. a>

then .2[w. w u. w f(u)]

Here it and u are both variables, and -<, is actually a well-founded relation on pairs
of states and objects. The relation <, is arbitrary: its selection may be deferred until
wter in the proof.

Evample (well-founded induction). The initial tableau in the makeclear derivation is

assertions goals plan:
so makeclear(a)

I. Clear(s , . a) so

By application of the well-founded induction rule, we may add to our tableau the new
assertion

if<w, w:u> <, u so. a>
then Clear(w. makeclear(u). it': u)

In other words, we may assume inductively that the makeclear program will yield a
plan makeclear(u) that satisfies the specified condition for any input u in any state w.

370 ZOHAR MANNA AND RICHARD WALDINGER

provided that the state-block pair < w, w: u> is less than the pair < s,, a) with respect
to some well-founded relation <,. U

Use of the induction hypothesis in the proof may account for the introduction of a
recursive call into the derived program.

Example (formation of recursive calls). In the makeclear derivation, we have obtained
th goal

3.[Clear s,, s, :: hat~a) sI" and SO
1 [not C &ar(sn .,.. a) put(hat(a). table)

The boxed subsentence 'nearly' unifies with the boxed subsentence of our induction
hypothesis.

ifw w'- i:u > < s,. a >

then I Clear(w',makectear(uh w" u,:

If we take the substitution to be

:l ,-- s,,, . -- nakeclear(u);.

the mismatched subterms are

(.V%, makeclear(ul: har(at and s:1 u.

We obtain the new goal

4. (s :makeclear(u)): hat(a) = so . u and
not Clear(s, : makeclear(u). a) and s• makeclear(u):.j ., , : u , , (, p u t(h a t(a) ta b le ,

Other substitutions are possible. re-tdling in other new goals. U

Note that. at this stage of the derivation, a recursive call makeclear(u has been
introduced into the plan entry for the new goal 4. The condition <s,,. s,, : u> -<,

Ks,. a> in the goal ensures that this recursive call will not contribute to nontermina-
tion. Any nonterminating computation involves an infinite sequence of nested recur-
sive calls makeclear(a). makeclear(u). makeclear(u') From any such sequence
we can construct an infinite decreasing sequence of pairs s,,. a>. < So. S, :u
<s.. s, : u" which is contrary to the well-foundedness of -,.

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 371

6.2. THE CHOICE OF A WELL-FOUNDED RELATION

Although the well-founded induction principle is the same from one theory to the
next. each theory has its own well-founded relations. We actually take well-founded
relations to be objects in each theory and regard the expression x -<, v as a notation

for a three-place relation < (2. x. Y). where , is a variable that ranges over well-founded

relations.
For the blocks-world theory. one relation of particular importance is the on

relation. which holds if one block is directly on top of another. In a given state. this
relation is well-founded because we assume that towers of blocks cannot be infinite.
More precisely. for each state w. we define the well-founded relation <,.. by the
following on-relation axiom:

x -<,,., y - On(w. x.v) (on relation)

(Note that for each state w we obtain a different relation <,...) This relation has the
hat property

(,) if not(w:: clear(v))

then w : hat(v) -<,,,. w: v.

The on relation -<,. applies to blocks, but the desired relation -<, in goal 4 applies
to state-block pairs. However, for any well-founded relation -.<,. there exists a

corresponding well-founded second-projection relation - on pairs, defined by the
following second-projection axiom:

< V'. X.. - 'O' (Y l. .1> - x, <y. (second projection)

In other words, two pairs are related by the second-projection relation <..,, if their

second components are related b. -<. As usual we omit the sort conditions. but here

13 is a variable that ranges over well-founded relations. (Of course. there is a first-
projection axiom also. but the second projection is the one we shall use.)

By applying rules of the system to the above properties. we may reduce our most
recent goal

4. (s,, ,makeclear(u)) : haila) = so : u and s
not C.'/cars,, m uleciar(u). a) and puihat a), table)

S(- s, : . > • < *, , / sa. a t l)

to obtain, by the second-protection axiom. taking 2 to be ir,(fl).

5. :s,, makeclearu)): hat(a) = so: u and s,, : makeclear(u):
not Clear(s0 : makecleartu), a) and put(hatia). tab/c)

so, : it a

372 ZOHAR MANNA AND RICHARD WALDINGER

and then. by the above hat property (*), taking ft to be on,,.

6. (so makeclear(hat(a))) hat(a)
So:hat(a) and so ; makeclear(hat(a)):

not Clear(so ;makeclear(hat(a)), a) and put(hat, a). table)
not (so :: clear(a))

Through these steps. the well-founded relation -<, on state-block pairs is chosen to
be ',,,, the second projection of the on relation in the initial state s,,.

At this stage. we have completed the derivation of the entire else-branch of the
makeclear program.

6.3. THE NEED FOR GENERALIZATION

One might believe that the derivation is nearly complete; all that remains is to dispense
with the first two conjuncts of our goal 6.

(+) (s, :makeclear(hat(a))): hat(a) = so:hat(a)

and

(1) not Clear(s, ;makeclear(hat(a)). a).

(The third conjunct, not(s, :: clear(a)). will then be eliminated by resolution with the
initial goal 1. resulting in the introduction of the conditional construct into the final
plan.) In fact, closer examination of the above two conditions indicates that the) are
not so straightforward.

The first condition (t) requires that. after hat(a) has been cleared, the value of hat a)
should be the same as it was before. In other words, we must show that the maketlear
program we are constructing will not move hat(a) in the process of clearing it. In fact.
the program does not move hat(a). but nothing in its specification forces it to be so
well-behaved. If makeclear were trying to be economical with table space. it might
clear Itatia' by putting underneath it all the blocks that were previously on top of it.
as illustrated in Figure 2.

d b

C C

b d

a a

so s,, makeclear(hat(a))

Fig

HOW TO CLEAR A BLOCK: A THEORY OF PLANS 373

Here a hypothetical makeclear program has cleared hat(a). that is. h. by putting c
and d underneath b. The subsequent value of hat(a) is d. not h. which is contrary to
the condition. An attempt to put hati(a) on the table will then lead to unpredictable
results because d is not clear.

The second condition (*) of the goal requires that. in the process of clearing hot(a).
we do not inadvertently clear a. Again the program we are constructing will not do
this. but there is nothing in the specification that prevents an over ambitious make-
clear program from clearing a or any other block when it was asked only to clear
hat(a), as illustrated in Figure 3. Attempting to move hatna) will then lead to un-
predictable results because hat(a) is not a block.

C

b

so so ; makeclear(hat(ai)

Fig. 3

The only knowledge we have about mAkeclear is that given in our induction
hypothesis. which depends in turn on what is required by our specification. We have
not specified what makeclear(a) does to blocks underneath its input parameter a or
elsewhere on the table. Thus it is actually impossible to prove the two conditions.

In proving a given theorem by induction, it is often necessary to prove a stronger.
more general theorem, so as to have the benefit of a stronger induction hypothesis.
Such strengthening is mentioned by Polya [571 (see also Manna and Waldinger [85b])
and is done automatically by the system of Boyer and Moore [79]. By analogy, in
constructing a program to meet a given specification. it is often necessary to impose
a stronger specification. so as to have the benefit of more powerful recursive calls.

This turns out to be the case with the makeclear problem: the program must be
constructed to meet not the given specification. but the following stronger one:

[C/ear(s, . a) and1

(Vs,,) (Iva) (3:1 [f OverIs[t , a. g)
(V,-) then no! Clear.(, :I,. g) and

hat'(s,, : Z. g) = hl'(s,, g)

(Here Over(ii. x. Y) holds if block x is directly or indirectly supported by object y in
state w.) In other words, in clearing block a. we do not clear any block g that is
underneaih a. nor do we chance the hat of any such block g. In short, the relati~e
positions of all the blocks underneath a remain unchanged. This theorem gives us an
induction hypothesis strong enough to show that. in clearing hat(a). or hat(att(a)), or
hat(hatJhat(a))). or we do not move hai(a) itself. The induction hypothesis is also
strong enough to enable us to prove the new condition in the theorem.

374 ZOHAR MANNA AND RICHARD WALDINGER

With human intuition, it may not be difficult to formulate such strengthened
theorems. But the strengthening required by this problem seems to be beyond the
capabilities of the Boyer-Moore system or other current theorem provers.

Although we do not know exactly how the condition could be strengthened
automatically. let us suppose that it can be done. In this case, we must 'edit* the
derivation by adding the new condition as a conjunct in the initial goal, to obtain

- goals plan:

s, : makeclear(a)

I*. Clear(s, ::,. a) - and

if Over(s. a, g'(:,))
then not Clearls, .:I, g'(:)) s "1

and hat'(s, ::,. g'(z,))
L = hat'(s,. g'(:,))

Here g'(:) is a skolem function obtained by removing the quantifier (Vg) from the
given goal. In presenting the derivation, we shall drop the argument of this function
and write g throughout.

We attempt to mimic the original derivation. applying the same sequence of rules
to the altered goals.

For example, in the original derivation we applied the resolution rule to goal I and
the put-tahie-clear axiom

if On(,,. x. r) and Clear(,,. v)

then Clt-ar(put'Hi, x. ahe)..v)

In the altered derivation, we apply the resolution nile to the altered goal I * and this
axiom, to obtain

2*. On(s, (s,, "z,:'u. a) and
Clear(s(: .(s , , u) andif' O,'er ,,, a. g)] , :Fthen not Clear(s. : putu. table). q) put)0u. tahi)

and hat'(:s,. :put(u. table), g)

L = hat(S. g)j

This goal is the same as goat 2 except for Jhe addition of a third conjunct.
We proceed h% mimicking the remaining steps of the original deriation. Wc

allow ourselves to interpose additional steps as necessary. Although the induction
hypothesis is now strong enough to establish the two troublesome conditions in our

HOW TO CLEAR A BLOCK. A THEORY OF PLANS 375

original derivation, additional deductive steps must be introduced to handle the new
conjunct in our goal. These steps do not affect the final program.

Ultimately we derive the goal

so , makeclear(hat(a)):
put(hat(a), table)

As we have seen, we can apply the resolution rule to our initial goal I and this one,
to obtain the final goal

/if clear(a)
then A

.ru S else makeclear(hat(a)):

put(hata). table)

From this goal we extract the plan

(if clear(a)

nakeclear(a) then A
else makeclear(hat(a)):

put(hat(a). table).

7. Discussion

In this section we touch on some matters we have not treated in this paper.

" I COMPARISON WITH HUMAN PLANNING

The reader may have been struck by the complexity of the reasoning required by the
makeclear derivation, as contrasted with the apparent simplicity of the original
planning problem. In fact the most difficult parts of the proof are involved not with
generating the plan itself, but with proving that it meets the specified conditions
successfully. We might speculate that human beings never completely prove the
correctness of the plans *hey develop. relying instead on their abilit, to draw plausible
inferences and to replan at any time if trouble arises. By a process of successive
debugging, the HACKER system of Sussman [73] developed a plan similar to our
makeclear plan. but it never demonstrated the plan's correctness. (It also relied on
somewhat higher-level knowledge.) While imprecise inference may be necessary for
planning applications, fully rigorous theorem proving seems better-suited to more
conventional program synthesis.

376 ZOHAR MANNA AND RICHARD WALDINGER

7,2. THE PROBLEM OF STRATEGIC CONTROL

Many people believe that a theorem-proving approach is inadequate for planning
because a general-purpose theorem prover will never be able to compete with a system
whose strategies are designed especially for problem solving. Although we have not
yet dealt with the strategic question. we propose to overlay a general- purpose theorem
prover with a special strategic component for planning. For example. the WARPLA.N-

system (Warren [74]) might be regarded as a situational-logic theorem prover
equipped with a strategy that enables it to imitate the STRIPS planning system (Fikes
and Nilsson [71]). We speculate that. in the same way. a theorem prover could
be induced to mimic any dedicated planning system, given the requisite strategic
component.

Acknowledgements

The authors would like to thank Martin Abadi. Tom Henzinger. Peter Ladkin.
Vladimir Lifschitz. John McCarthy, and Jonathan Traugott for reading this manu-
script. discussing its content, and suggesting improvements. Thanks also to Dag
Mellgren and Mark Stickel, for assistance in applying their implementations of txA0
equational-unification algorithms, and to Evelyn Eldridge-Diaz. for her patience in
TEXing many versions of the manuscript.

References

Boyer and Moore [791i R. S Boyer and J S Moore. .4 Comiputational Lozic. Academic Press. Orlando.
Fla., 1979.

Digricoli and Harrison [861 V J1 Digricoli and M C. Harrison, 'Equal it .-based hinar% resolution.
Journal of the ACM 33. April 1996. pp 253- 289

Fay [791 M. Fay. 'First -order unification in an equational Iheory.. Proceedinzs of the Fourth IlltJo 'm

A4utomated Deduct ion, Austin. Texas. Feb. 1979. pp. b167
Fikes and Nilsson [711 R E. Fikes and N J. Nilsson. 'STRIPS. A new approach to the application oI

theorem proving to problem solving", Artificial Inielhegente 2. Winier 1971. pp 189-208
Green 1691- C. C. Green. 'Application of theorem prosing io problem solsing'. Procding.. of tht Inwr

national Joint Conferencei' n 4ruticial lntelloeence. Washington. D.C ,May 1969. pp '-I1k 21L9
Hullot (80): i -M. Hullot. 'Canonical forms and unification., Proteedings ol the Fil ,Ih (,,ih'rrn,,

A4utomated Deduction. Les Arcs. France. July 1990. pp. 318 334
Kowalski 1791 R. Kowalski. Logic for Problemn Solwing. North-Holland. New York. Ns Y . 19-1)
Lifschttz 1851 V Litschitz. 'Circumscription in ihe blocks A orld,. unpublished repori. Stanford U~ntscersit.

Stanford. Calif.. Dec. 1995.
McCarthy 1631: J McCarthy. *Situations, actions, and causal laws,. technical report. Stanford Uniscr~ii%.

Stanford. Calif.. 1963 Reprinted in Si'mant In/ormation Proii'.sionk (Marvin MtnsksN. e'ditor). MIT
Press. Cambridge. Mass.. 1968. pp 410 41'.

McCarth-. and Haves [6i9! .I McCarih,, and P Haves. 'Some philosonhical problems from the standpoint
of artificial inicL~genx. .W-hn nelligenci'4 43 B cliur and D Michie. editors). Arierican Elses ier.
%cA York. N V , ('109. pp 463 502.

Marma and Waldinger 1801: Z. Manna and R. Waldinger. A deductive approach to program %~nihcsi,'.
A4CM Transactons (in Proieramnung Lanviuages and Stsierms 2. Jan 1980. pp 90) 121

Manna and Waldinger [85a). Z Manna and R Waldinger. 'The origin of the binarv.-carch paraditm.
ProceedingN of the Ninth International Joint Conferent on 4rtihftial lnrillieenc'. Los Aneele . Cil
Aug. 1985. pp 222 224. Also in Sc cni'c ol Computer Proe'ramniine Ito appear)

'V

HOW TO CLEAR A BLOCK. A THEORY OF PLANS 377

Manna and Waldinger [85b]: Z. Manna and R. Waldinger. The Logical Basis for Computer Programming,
Vol. 1: Deductive Reasoning. Addison-Wesley. Reading. Mass.. 1985

Manna and Waldinger 1861: Z. Manna and R. Waldinger. 'Special relations in automated deduction*.
Journal of the A4CM 33. April 1986. pp. 1 60.

Martelli and Rossi 186): A. Martelli and G. Rossi, 'An algorithm for unification in equational theories'.
Proceedings of the Third SYmposium on Logic Programming. Salt Lake City. Utah. Sept. 1986.

Morris 1691: 1. B. Morris. 'E-resolution: Exttension of resolution to include the equality relation., Proceed-
ings of the International Joint Conference on A4rtificial Intelligence. Washington. D.C.. May 1969.
pp. 287- 294.

Murray [821: N. V. Murray. *Completely nonclausal theorem proving' A.rhifa Intelligence 8. 1992,
pp 67-85.

Polya [57]: G. Polya. Ho" to Solve It. Doubleday and Company. Garden City. N. 957
Stickel (85]: M. E. Stickel, 'Automated deduction by theory resolution., Journal of .4utomated Reasoninz

1. 1985. pp. 333-355.
Sussman 1731: G. J. Sussman, A Computational Model of Skill .4(quisition. Ph.D. thesis. MIT. Cambridge.

Mass.. 1973.
Waldinger and Lee 169): R. J. Waldinger and R. C. T. Lee. 'PROcW: A step toward automatic program

writing'. Proceedings of the International Joint Conference on .4ritficial Intelligence. Washington. D C,
May 1969. pp. 241-252.

Warren [74): D H. D Warren. 'WARPLAN:i A syvstem for generating plans,. technical report. UniversiiN of
Edinburgh. Edinburgh. Scotland. 1974.

